+ - 0:00:00
Notes for current slide
Notes for next slide

R for Data Science

With Sports Applications

Rafael La Buonora

2023-09-20

1

Course Philosophy

  • Hands on

  • Strong Fundamentals: run before you fly

  • Relevance to your job

2

3

Data Scientists task

A wide image with a diagram of branching in git.

4

Data Import

  • Excel, text files.

  • Databases

  • Internet: APIS, data scraping

  • Devices (GPS, Imaging, etc.)

5

Data Wrangling

80% of data analysis is spent on the process of cleaning and preparing the data (Dasu and Johnson 2003)

6

Modeling

  • Stats stuff
7

Visualize

  • Exploratory, interactive visualization.
8

Communicate

  • Communicating your findings effectively to stakeholders is crucial for success of data science.

  • R supports multiple ways of presenting your results: blogs, written documents, data visualization and interactive applications.

9

Documents

Informe URSEC

10

Slide Decks

  • This one!
11

Visualization (1)

From sportstatisticsrsweet.rbind.io

13

Visualization (2)

Mitch Henderson

14

Visualization (3)

Basketball Data Science: With Applications in R

15

Themes

16

Open Source, reproducibility, et all

  • R's strength is its community

  • Workshops, blogs, Journals, etc.

18

Getting started

19

R & RStudio

R & RStudio

  • RStudio is a computing environment

  • R is a programming language

20

RStudio

RStudio

  • You do not use a lot of the windows.

  • You need to use well the ones you use.

21

RStudio (2)

  • Working Directory

  • getwd(), setwd(), list.files().

  • install.packages()

  • Sourcing scripts .R

  • Opening data files (.rds)

22

R

  • Functions and objects

  • Variables and assignment

  • Side effects

23

Objects

x <- c(1, 2, 3)
24

Objects (2) The Data Frame

  • Similar to an Excel spreadsheet (?)

  • It has rows and columns

  • Each row is an observation

  • Each column is a feature of the data

mtcars
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
## Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
## Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
## Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
## Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
## Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
## Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
## Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
## Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
## Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
## Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
## Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
## Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
## Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
## Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
## Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
## Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
## AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
## Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
## Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
## Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
## Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
## Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
## Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
## Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
## Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
## Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
25

Ask for examples of data sets.

Functions

The take arguments and return objects and/or produce side effects.

View(mtcatrs)
str(mtcars)
## 'data.frame': 32 obs. of 11 variables:
## $ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
## $ cyl : num 6 6 4 6 8 6 8 4 4 6 ...
## $ disp: num 160 160 108 258 360 ...
## $ hp : num 110 110 93 110 175 105 245 62 95 123 ...
## $ drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
## $ wt : num 2.62 2.88 2.32 3.21 3.44 ...
## $ qsec: num 16.5 17 18.6 19.4 17 ...
## $ vs : num 0 0 1 1 0 1 0 1 1 1 ...
## $ am : num 1 1 1 0 0 0 0 0 0 0 ...
## $ gear: num 4 4 4 3 3 3 3 4 4 4 ...
## $ carb: num 4 4 1 1 2 1 4 2 2 4 ...
26

Your turn

27

Lab: a complete R script

What the script does

  • Opens two rds files with data from NBA teams.

  • Merges on the Team column.

  • Calculates the mean assits, blocks, steals for the teams that went to the playoffs and the ones that did not.

  • Create an html table with the results.

28

TODO

  • Open the html file. Do Playoff teams have more points on average?

  • Open the script file in RStudio and run it. Make sure that it works correctly.

  • What functions does it use?

  • Can you identify which tasks each function supports (import, wrangling, model, communication)?

  • What objects does it create?

  • How many rows does the df data frame have?

  • Which are the columns?

29

Course Philosophy

  • Hands on

  • Strong Fundamentals: run before you fly

  • Relevance to your job

2
Paused

Help

Keyboard shortcuts

, , Pg Up, k Go to previous slide
, , Pg Dn, Space, j Go to next slide
Home Go to first slide
End Go to last slide
Number + Return Go to specific slide
b / m / f Toggle blackout / mirrored / fullscreen mode
c Clone slideshow
p Toggle presenter mode
t Restart the presentation timer
?, h Toggle this help
Esc Back to slideshow